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Inverse Problems

Measuring devices have a non sharp impulse response : observations are a
blurred version of a “true ideal scene”.

Application in
I Geophysics,
I Astronomy,
I Microscopy,
I Spectroscopy,
I . . .

(a) Widefield microscope (b) PALM

FIGURE – Images obtained from the Cell Image Library

Goal : Obtain as much detail as we can from given measurements.
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Sparse linear inverse problems
FIGURE – 2D and 3D Single Molecule Localization Microscopy (SMLM)

Classical microscope

Frame Super-resolved output
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FIGURE – Sparse piecewise-linear representation of data
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FIGURE – 2D and 3D Single Molecule Localization Microscopy (SMLM)

Classical microscope Frame 3...
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Model : continuous-domain sparse inverse problem
Input : Sparse Radon measures

ma0,x0
def.
=

N∑
i=1

a0,iδx0,i a0,i ∈ R, x0,i ∈ X = Rd or Td .

Forward operator : Φ :M(X )→ RM linear continuous,
M(X ) space of bounded Radon measures on X = Td or Rd .

Measurements : y0
def.
= Φma0,x0 ∈ RM or y = y0 + w ∈ RM

0.0 0.2 0.4 0.6 0.8 1.01.0

0.5

0.0

0.5

1.0

ma0, x0

FIGURE –

Question : recover ma0,x0 ∈M(X ) from y ∈ RM ?
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FIGURE – Φ is a discretized Laplace transform.

Question : recover ma0,x0 ∈M(X ) from y ∈ RM ?
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FIGURE – Φ is a convolution with a Gaussian kernel.

Question : recover ma0,x0 ∈M(X ) from y ∈ RM ?
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Model : continuous-domain sparse inverse problem
Problem : From y0

def.
= Φma0,x0

or y0 + w , recover ma0,x0 or ma,x “close”.
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One strategy : Prony’s methods (MUSIC, ESPRIT,...)
I Advantages : always works when w = 0, insensitive to the sign of the

amplitudes.
I Drawbacks : works only for deconvolution.
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Grid-free support recovery
Method : Variational approach using low a complexity prior.

Definition (Total Variation Norm onM(X ))

|m|(X ) = sup{
∫
X
ψdm : ψ ∈ C(X ), ‖ψ‖∞ ≤ 1}

is total mass of m and extends `1 norm for vectors (|ma0,x0 |(X ) = ‖a0‖1).

Basis Pursuit in the Continuum BLASSO
(Candès-FG 13’, de Castro & al 12’) (Bredies & al 13’, Azais & al 15’)
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min
Φm=y0

|m|(X ) min
m∈M

1
2 ‖Φm − (y0 + w)‖2 + λ|m|(X )

(BPC) (BLASSO)

Remark :
I No discretization ! Continuous setting.
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Achievements of the method

Recovery result for (BPC)

Theorem (Candès-FG 13’, FG 16’)
If Φ is the ideal low-pass filter and ∆(ma0,x0 ) ≥ 1,26

fc
where

∆(ma0,x0 )
def.
= min

i 6=j
|x0,i − x0,j |,

then ma0,x0 is the unique solution to

min
Φm=y0

|m|(T) (BPC).

ma0,x0 =
∑N

i=1 a0,iδx0,i

u
0 1

x0,1

x0,2

x0,3

∆(ma0,x0 )

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1 Original

Recovered

FIGURE – Spikes with different signs too close⇒ reconstruction of ma0,x0 impossible.
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Achievements of the method

Identifiability of Positive Measures for (BPC)

Theorem (de Castro & Gamboa 12’)
Φ ideal low-pass filter, cutoff frequency fc .
If ma0,x0 has N ≤ fc positive Dirac masses, then unique solution of (BPC).

Démonstration.
The following function

∀u ∈ T, η(u) = 1− c
N∏

i=1

(sin(π(u − x0,i )))2,

satisfies η ∈ Im Φ∗, η(x0,i ) = 1 and ‖η‖∞ ≤ 1 for
c > 0 small enough.

-1

1

FIGURE – η for 3 spikes.

Proposition (Certificate)
ma0,x0 is a solution of (BPC) if there exists η ∈ C(X ) ∩ Im(Φ∗) satisfying

∀i , η(x0,i ) = sign(a0,i ) and ‖η‖∞ ≤ 1.

Consequence : ∆(ma0,x0 )→ 0, recovery of ma0,x0 always guarenteed.
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Achievements of the Method

Stability to noise

Theorem (Bredies-Pikkarainen 13’)
If the solution to (BPC) is unique then the solutions of

min
m∈M(X )

1
2
‖Φm − (y0 + w)‖2 + λ|m|(X ), (BLASSO),

converge in the weak-* sense, when λ, ‖w‖
2

λ
→ 0, to the solution of (BPC).

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Weak-* convergence of mλ  toward ma0 ,x0

mλ

FIGURE – mλ, sol of (BLASSO), weak-* converges toward ma0,x0 when λ, ‖w‖
2

λ
→ 0.

Problem : No information on the structure of mλ.

10/36



Achievements of the Method

Stability to noise

Theorem (Bredies-Pikkarainen 13’)
If the solution to (BPC) is unique then the solutions of

min
m∈M(X )

1
2
‖Φm − (y0 + w)‖2 + λ|m|(X ), (BLASSO),

converge in the weak-* sense, when λ, ‖w‖
2

λ
→ 0, to the solution of (BPC).

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Weak-* convergence of mλ  toward ma0 ,x0

mλ

FIGURE – mλ, sol of (BLASSO), weak-* converges toward ma0,x0 when λ, ‖w‖
2

λ
→ 0.

Problem : No information on the structure of mλ.

10/36



Background

Theoretical Aspects

Numerical Aspects

Application : 3D SMLM

Extension : generalized TV

11/36



Agnostic recovery for (BPC). Uniqueness.

Theorem (de Castro & Gamboa 12’)

Φ ideal low-pass filter, cutoff frequency fc .
If ma0,x0 has N ≤ fc positive Dirac masses, then unique solution of (BPC).

Framework : y0 = Φ
(∑N

i=1 a0,iδx0,i

)
, with N ≤ fc .

Question : what if y0 = Φ(?) or y0 = Φ(ma0,x0 ) with ma0,x0 not solution.

ma0,x0 =
∑N

i=1 a0,iδx0,i

u
0 1

x0,1

x0,2

x0,3

∆(ma0,x0 )

FIGURE – y0 = Φ(ma0,x0 ), but ma0,x0 not solution if ∆(ma0,x0 ) small. Exists sparse
solution? Unique?

Theorem (Unser & al. 17’, Boyer & al. 18’, Fisher & Jerome 1975, Dubins 1962)

Representer theorem : for all y0, always exists sparse solution of (BPC) with
at most 2fc + 1 Dirac masses.

Question : when is it unique?
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Agnostic recovery for (BPC). Uniqueness.

Assumption :
I Φ ideal low pass filter onM(T),
I measurements y ∈ Im(Φ).

Proposition
The matrix

Ty =


y0 y1 · · · · · · yfc

y−1 y0 y1 · · · yfc−1
...

. . .
. . .

. . .
...

y−fc +1 · · · y−1 y0 y1

y−fc · · · · · · y−1 y0

 ∈ C(fc +1)×(fc +1)

is Toeplitz and hermitian symmetric. Moreover,

Ty = Vx0 Da0 V ∗x0 ⇔ y = Φ(ma0,x0 ).

where Vx0 Vandermonde matrix whose k-th column is (1 eix0,k · · · eifcx0,k ),
Da0 diagonal matrix with a0 on diagonal.
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Agnostic recovery for (BPC). Uniqueness.

Proposition (Carathéodory-Féjer-Pisarenko decomposition)

Ty positive semi-definite and rank(Ty ) < fc + 1.
Then Ty = Vx0 Da0 V ∗x0 with (x0, a0) ∈ Trank(Ty ) × Rrank(Ty )

>0 unique.

Equivalently : Ty positive semi-definite and rank(Ty ) < fc + 1 then
y = Φ(ma0,x0 ) with ma0,x0 unique rank(Ty )-sparse positive measure.

Problem : ma0,x0 has also lowest TV?

Theorem (Debarre, D., Fageot 22’)

Solutions of (BPC) can be characterized as follows :

1. If Ty has at least one negative and one positive eigenvalue, then unique
solution with at most 2fc Dirac masses, with at least one positive and one
negative weight ;

2. If Ty is positive, resp. negative, semi-definite and rank(Ty ) < fc + 1, then
unique solution with rank(Ty ) positive, resp. negative, Dirac masses ;

3. If Ty is positive, resp. negative, definite, then infinitely many solutions,
none with less than fc + 1 Dirac masses and uncountably many with
fc + 1 positive, resp. negative, Dirac masses.
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Sparse super-resolution of 1D positive measures
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FIGURE – Super-resolution problem : m0(∆) =
∑N

n=1 a0,nδx̄0+∆·x0,n with ∆→ 0 and
w ∼ N (0, σ2IdRM ). Φ convolution by sampled 1D Gaussian.

Question : Link N, ∆, λ and σ, when ∆→ 0, to ensure support recovery?
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A Candidate Certificate for (BPC)

Proposition (Certificate)
ma,x is a solution of (BPC) if there exists η ∈ C(X ) ∩ Im(Φ∗) satisfying

∀i , η(x0,i ) = sign(a0,i ) and ‖η‖∞ ≤ 1.

Definition (Vanishing Derivatives Pre-certificate - Duval & Peyré 13’)
We define pV as

pV = argmin{‖p‖ : ∀i = 1, . . . ,N, (Φ∗p)(x0,i ) = sign(a0,i ), (Φ∗p)′(x0,i ) = 0}.

pV is easy to compute. We define the vanishing derivatives pre-certificate as
ηV

def.
= Φ∗pV .

1

(a) ηV Dirichlet fc = 11

1

(b) ηV Dirichlet fc = 9

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y
-1

-0.5

0

0.5

1

(c) ηV Gaussian 2D
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Robustness to Noise of the Support

Theorem (Duval & Peyré 13’)
If ηV is non-degenerate i.e.

∀u ∈ X \ ∪i{x0,i}, |ηV (u)| < 1 and ∀i , η′′V (x0,i ) 6= 0,

then ma0,x0 unique solution of (BPC) and for all (λ,w) s.t. max( ‖w‖
λ
, λ) ≤ C

for some C > 0, the (BLASSO) has a unique solution ma,x =
∑N

i=1 aiδxi s.t.

|(a, x)− (a0, x0)|∞ = O(λ, ‖w‖).
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Limit of ηV when ∆→ 0
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∆ = 0.1 ∆ = 0.01
Consequence : ηV converges towards some function ηW satisfying :
I ηW (0) = 1,

I η
(i)
W (0) = 0 for 1 ≤ i ≤ 2N − 1,

I some minimal norm property.
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Definition of ηW - D., Duval & Peyré 17’

Definition ((2N − 1)-Vanishing Derivatives Pre-certificate)
We define pW as

pW = argmin{‖p‖ : (Φ∗p)(0) = 1, (Φ∗p)′(0) = 0, . . . , (Φ∗p)(2N−1)(0) = 0}.

We define the (2N − 1)-vanishing derivatives pre-certificate as ηW
def.
= Φ∗pW .

1 1 1

N = 1 (ηV = ηW ) N = 2 N = 3

FIGURE – ηW for several value of N, where Φ is the ideal low-pass filter.

Intuition : the behavior of ηV is therefore governed by specific properties of
ηW for small values of ∆ > 0.

Definition (Non-Degeneracy of ηW )
ηW is (2N − 1)-non-degenerate if :

η
(2N)
W (0) 6= 0 and ∀u ∈ X \ {0}, |ηW (u)| < 1.
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Separation Influence on Robustness of Super-Resolution
Theorem (D., Duval & Peyré 17’)
If ηW is (2N − 1)-non-degenerate, there exist ∆0 > 0, CR > 0, C > 0 and
M > 0 which depend only on Φ and (a0, z0) such that

∀t ∈ (0,∆0) , ∀(λ,w) ∈ B(0,CR∆2N−1) and
∥∥∥w
λ

∥∥∥ ≤ C,

the problem (BLASSO) admits a unique solution ma,tz composed of exactly N
spikes and ma,tz satisfies :

|(a, z)− (a0, z0)|∞ ≤ M
(
|λ|

∆2N−1 +
‖w‖

∆2N−1

)
.

Optimality of the scaling of w and λ in ∆2N−1

Suppose that w = λw0 and λ = ∆αλ0.

x?
i

�0
↵ < 2N � 1

�0

�max

↵ = 2N � 1

x?
i

x0

x?
i

�0
↵ < 2N � 1

�0

�max

↵ = 2N � 1

x?
i

x0
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Grid-less algorithm for BLASSO

Goal : solve numerically (BLASSO)

min
m∈M

1
2
‖Φm − y‖2

2 + λ ‖m‖M

Several approaches :
I discretization : LASSO→ FISTA,
I SDP formulation (only for Fourier measurements), [Candes-FG 13’,

Catala & al. 19’],

I solve (BLASSO) on Banach spaceM(X )→ Frank-Wolfe algorithm,
[Bredies & al ’13, Boyd & al ’17].
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Frank-Wolfe algorithm

FW applies to
min
m∈C

f (m),

I C weakly-compact convex set of Banach space,
I f differentiable with Lipschitz gradient.

The algorithm :
1: for k = 0, . . . , n do

2: Minimize : sk ∈ argmins∈C f (mk ) + df (mk )[s −mk ].

3: if df (mk )[sk −mk ] = 0 then
4: mk solution. Stop.
5: else

6: Step research : γk ← 2
k+2 or γk ∈ argminγ∈[0,1]f (mk + γ(sk −mk )).

7: Update : mk+1 ← mk + γk (sk −mk ).

8: end if
9: end for
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The Sliding Frank-Wolfe Algorithm [D., Duval & Peyré]
Start with m0 = 0.

2: for k = 0, . . . , n do
mk =

∑Nk
i=1 ak

i δ(· − xk
i ), ak

i ∈ R, xk
i ∈ X . Find

Step 1 : add new Dirac mass (non-convex)

xk
∗ ∈ argmax

x∈X
|ηk (x)| where ηk

def.
=

1
λ

Φ∗(y − Φmk ) ∈ C0(X ),

4: if |ηk (xk
∗ )| ≤ 1 then

mk solution of (BLASSO). Stop.
6: else

Step 2 : compute new weights (convex, LASSO)

Find
(ak+1/2

i )1≤i≤Nk +1 3 argmin
a∈RNk +1

1
2
‖ΦGa− y‖2

2 + λ ‖a‖1 ,

where G = (xk
1 , . . . , x

k
Nk
, xk
∗ ).

Step 3 : local descent (non-convex)

8: Initialize with ((ak+1/2
i )1≤i≤Nk +1,G). Find

((ak+1
i ), (xk+1

i )) 3 argmin
(a,x)∈RNk +1×XNk +1

1
2
‖Φx a− y‖2

2 + λ ‖a‖1 .

end if
10: end for
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Illustration of the algorithm : 2D SMLM example

FIGURE – One frame of a sequence of SMLM acquisitions. PSF : integration over pixel
domain of 2D Gaussian convolution (width 200nm). Background noise + Gaussian
noise
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Illustration of the algorithm : 2D SMLM example

Iteration 9

ηk = 1
λ

Φ∗(y − Φ(mk )) Measures mk+1/2 and mk

FIGURE – Main steps of the SFW algorithm.

Convergence of the algorithm in 15 main iterations.
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Illustration of the algorithm : 2D SMLM example

Iteration 11

ηk = 1
λ

Φ∗(y − Φ(mk )) Measures mk+1/2 and mk

FIGURE – Main steps of the SFW algorithm.

Convergence of the algorithm in 15 main iterations.
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Illustration of the algorithm : 2D SMLM example

Iteration 14
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FIGURE – Main steps of the SFW algorithm.
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Illustration of the algorithm : 2D SMLM example

Iteration 15

ηk = 1
λ

Φ∗(y − Φ(mk )) Measures mk+1/2 and mk
Stopping criteria

FIGURE – Main steps of the SFW algorithm.

Convergence of the algorithm in 15 main iterations.
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Finite Time Convergence of the SFW

Theorem (D., Duval & Peyré)
Suppose ma,x =

∑N
i=1 aiδxi unique solution of (BLASSO) and

ηλ = 1
λ

Φ∗(y − Φma,x ) is non-degenerate i.e. :

∀t ∈ X \
N⋃

i=1

{xi}, |ηλ(t)| < 1 and ∀i ∈ {1, . . . ,N}, η′′λ(xi ) 6= 0.

Then the SFW algorithm recovers ma,x after finite number of iterations i.e.
there exists k ∈ N such that mk = ma,x .

Open question : convergence in exactly N iterations?
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PALM+MA-TIRF Model (Morpheme team, Institute of Biology Valrose (iBV)
The kernel φ of forward operator Φ, where Φm =

∫
X φ(x , y , z)dm(x , y , z), is

given by

φ(x , y , z) = (ψxy (xi − x)ψxy (yi − y)ψk (z))(i,j,k)∈{1,...,Np}2×{1,...,K} ∈ RNp×Np×K .

with for all s ∈ R, for all k ∈ {1, . . . ,K} and for all z ∈ [0, zb] :

ψxy (s) =
1√

2πσ2

∫ s+ 1
2Np

s− 1
2Np

e−
u2

2σ2 du,

ψk (z) = ξ(z)e−sk z with ξ(z) =

(
K∑

k=1

e−2sk z

)−1/2

.

FIGURE – y0 = Φma0,x̄0 when K = 4 for the PALM+MA-TIRF model and
ma0,x̄0 = δ(· − (1.5, 2.5, 0.1)) + δ(· − (1.5, 3, 0.5)) + δ(· − (2, 5, 0.7)) + δ(· −
(4.5, 3.5, 0.4)) + δ(· − (5, 1, 0.2)).
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PALM+Astigmatism Model (Huang & al, ’08)
The kernel φ of forward operator Φ is given by

φ(x , y , z) = (ψx,k (xi − x , z)ψy,k (yi − y , z))(i,j,k)∈{1,...,Np}2×{1,...,K} ∈ RNp×Np×K .

where for all s ∈ R, for all z ∈ [0, zb] and for all k ∈ {1, . . . ,K} :

ψxy (s) =
1√

2πσx,k (z)2

∫ s+ 1
2Np

s− 1
2Np

e
− u2

2σx,k (z)2
du.

with :

σx,k (z) = σ0

√
1 +

(
α(z − fp,k )− β

d

)2

and σy,k (z) = σx,k (−z + 2fp,k ).

FIGURE – y0 = Φma0,x̄0 when K = 4 for the PALM+Astigmatism model and
ma0,x̄0 = δ(· − (1.5, 2.5, 0.1)) + δ(· − (1.5, 3, 0.5)) + δ(· − (2, 5, 0.7)) + δ(· −
(4.5, 3.5, 0.4)) + δ(· − (5, 1, 0.2)).

30/36



PALM+Double-Helix Model (Pavani & al, ’09)
The kernel φ of forward operator Φ is given by

φ(x , y , z) =
(
ψ1

x,k (xi − x , z)ψ1
y,k (yi − y , z) + ψ−1

x,k (xi − x , z)ψ−1
y,k (yi − y , z)

)
(i,j)

,

with for all s ∈ R and for all z ∈ [0, zb] :

ψxy (s) =
1√

2πσ2

∫ s+ 1
2Np
−εrx,k (z)

s− 1
2Np
−εrx,k (z)

e−
u2

2σ2 du.

where :

rx,k (z) =
ω

2
cos(θk (z)), ry,k (z) = −ω

2
sin(θk (z)) and θk (z) =

π

3
z − fp,k

fp,K
.

FIGURE – y0 = Φma0,x̄0 when K = 4 for the PALM+Double-Helix model and
ma0,x̄0 = δ(· − (1.5, 2.5, 0.1)) + δ(· − (1.5, 3, 0.5)) + δ(· − (2, 5, 0.7)) + δ(· −
(4.5, 3.5, 0.4)) + δ(· − (5, 1, 0.2)).
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Comparison of different acquisition modalities for 3D SMLM

(a) Astigmatism (b) Double Helix (c) MA-TIRF

FIGURE – Recovered tubular structures (width : 20nm) from different 3D acquisition modalities and
synthetic data. Acquisition : 20k frames with ' 10 fluorophores per frame.
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Sparse piecewise linear representation of data (Debarre, D., Fageot, Unser 21’)
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FIGURE – Sparse piecewise linear interpolation

Exact interpolation :
min

f∈M
D2 ,f (xm)=y0,m

∥∥D2f
∥∥
M where MD2

def.
= {f ∈ S′(R) : D2f ∈M}.

Existence of sparse solutions :

∀t ∈ R, f?(t) = ((·)+ ∗ma0,x0 ) (t) + α + βt .

Key idea : dual certificates also piecewise linear η =
∑M

m=1 cm (xm − ·)+.
Consequences :
I connecting the data points gives solution. fcano = a1 + aM t +

∑M−1
m=2 am(· − xm)+

I getting sparsest solutions in O(M) operations,
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Conclusion

Summary :
I many problems can be formulated as sparse inverse problems over

continuous domain ;
I strong theoretical guarentees : existence, uniqueness, robustness to

noise, super-resolution... ;
I existence of solvers that work in the continuum with convergence

guarentees ;
I extensions to generalized TV (TV with differential operators).

Challenges :
I dimension d > 1 harder to analyse theoretically ;
I sliding step becomes slow when dealing with lots of Dirac masses (see

Courbot & al 21’ for an acceleration).
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Merci de votre attention.
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